水稻穗异常突变体tutou4的鉴定及基因定位

宋远辉,花芹,林泉祥,郑思怡,欧阳晨林,杨晔,孙家猛,陈庆全,李金才,张海涛

植物遗传资源学报. 2021, 22(5): 1304-1313

PDF(8484 KB)
PDF(8484 KB)
植物遗传资源学报 ›› 2021, Vol. 22 ›› Issue (5) : 1304-1313. DOI: 10.13430/j.cnki.jpgr. 20210316003
论文

水稻穗异常突变体tutou4的鉴定及基因定位

  • 宋远辉, 花芹, 林泉祥, 郑思怡, 欧阳晨林, 杨晔, 孙家猛, 陈庆全, 李金才, 张海涛
作者信息 +

Identification and Fine Mapping of A Panicle Aberrant Mutant tutou4 in Rice (Oryza sativa L.)

  • SONG Yuan-hui, HUA Qin, LIN Quan-xiang, ZHENG Si-yi, OUYANG Chen-lin, YANG Ye, SUN Jia-meng, Chen Qing-quan, Li Jin-cai, ZHANG Hai-tao
Author information +
History +

摘要

水稻穗异常退化现象在水稻的生长发育过程中经常发生。穗部退化可引起穗长、枝梗数、每穗粒数和结实率下降影响单株产量。穗退化性状因其遗传基础复杂、受环境和生理因素影响较大,其分子机制及其遗传网络仍知之甚少。tutou4是一个来自于组织培养的穗异常退化突变体,突变体表现为穗部部分颖花退化,总穗粒数和枝梗数减少,单株产量降低。遗传分析表明,该性状由一对隐性核基因控制,通过图位克隆的方法最终将候选基因定位在水稻8号染色体短臂端Os8-3-2和Os8-3-3之间,遗传距离为39.09 kb的范围内。该区间包括3个编码基因,通过测序发现tutou4突变体中基因LOC_Os08g06480的起始密码子上游有4325 bp的片段缺失,且最后一个外显子(7538 bp)上碱基A被替换成碱基G,但氨基酸未改变。荧光定量PCR的结果表明,该基因在突变体中表达量显著下降。因此,tutou4穂异常性状可能是由Tutou4启动子缺失或外显子碱基替换造成的基因表达量降低引起的表型突变。Tutou4为已报道基因OsLIS-L1/OsREL2/ASP1的等位基因。Tutou4表达量变化引起穗发育异常的表型为研究穗部发育的分子机制提供新的材料基础。

Abstract

Aberrant degeneration of panicle (ADP) usually occurs during the reproductive growth in rice. It causes yield loss due to the reductions of panicle length, branch number, grain number per panicle and seed setting. However, the ADP phenotype is sensitive to growth environments and regulated by multiple quantitative trait loci, which have complicated the identification of ADP-related function genes.The molecular mechanism underlying ADP occurrence remain largely unknown. The tutou4 is a panicle degeneration mutant derived from a tissue culture, and shows abnormal panicle, reduction of panicle grain number and branch number, as well as single plant yield. Genetic analysis showed that the ADP trait was controlled by a pair of recessive nuclear gene. The candidate gene was finally mapped to the short arm of chromosome 8, flanked by both Indel markers Os8-3-2 and Os8-3-3, with an interval of 39.09 kb, which contained three encoding genes. The sequencing result showed a 4325-bp deletion in the promoter region and one base alternation (A?G, synonymous) of the gene LOC_Os08g06480, which was designated as OsLIS-L1/OsREL2/ASP1. Real-time PCR analysis revealed a reduction on gene expression in mutant to that of the wild type. Considering the expression level decreased in the tutou4, the mutant will be useful germplasm in the study of abnormal panicle degeneration.

关键词

水稻;穗异常;表型分析;花粉败育;图位克隆

Key words

rice / aberrant panicle / phenotypic analysis / pollen abortion / map-based cloning

引用本文

导出引用
宋远辉,花芹,林泉祥,郑思怡,欧阳晨林,杨晔,孙家猛,陈庆全,李金才,张海涛. 水稻穗异常突变体tutou4的鉴定及基因定位. 植物遗传资源学报. 2021, 22(5): 1304-1313 https://doi.org/10.13430/j.cnki.jpgr. 20210316003
SONG Yuan-hui,HUA Qin,LIN Quan-xiang,ZHENG Si-yi,OUYANG Chen-lin,YANG Ye,SUN Jia-meng,Chen Qing-quan,Li Jin-cai and ZHANG Hai-tao. Identification and Fine Mapping of A Panicle Aberrant Mutant tutou4 in Rice (Oryza sativa L.). Journal of Plant Genetic Resources. 2021, 22(5): 1304-1313 https://doi.org/10.13430/j.cnki.jpgr. 20210316003

参考文献

[1]Yao Y, Yamamoto Y, Yoshida T, Nitta Y, Miyazaki A. Response of differentiated and degenerated spikelets to top-dressing, shading and day/night temperature treatments in rice cultivars with large panicles. Soil Science Plant Nutrition, 2000, 46(3), 631-641.
[2]Deveshwar P, Prusty A, Sharma S, Tyagi A K. Phytohormone-Mediated molecular mechanisms involving multiple genes and QTL govern grain number in rice. Front Genet, 2020, 11(1): 586462-586484.
[3]Skirpan A, Wu X, Paula, McSteen. Genetic and physical interaction suggest that barren stalk1 is a target of barren inflorescence2 in maize inflorescence development. Plant Journal, 2008, 55 (5): 787-797.
[4]Gauravi M, Deshpande, Kavitha, Ramakrishna, Grace L, Chongloi U,Vijayraghavan. Functions for rice in vegetative axillary meristem specification and outgrowth. Journal of Experimental Botany, 2015,66(9): 2773-2784.
[5]Qin F, Sakuma Y, Tran L S P, Tran K,Maruyama S. Arabidopsis dreb 2a-interacting proteins function as ring e3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell, 2008, 20(6): 1693-1707.
[6]Tabuchi H, Zhang Y, Hattori S, Omae M, Sato Y. Lax panicle 2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell, 2011, 23(9): 3276-3287.
[7]Shao G N, Lu Z F, Xiong J S, Bing, Wang Y H,Jing X B. Tiller bud formation regulators moc1 and moc3 cooperatively promote tiller bud outgrowth by activating fon1 expression in rice. Molecular Plant, 2019, 12(8): 1090-1102.
[8]Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J. Expression level of ABERRANT PANICLE ORGANIZATION 1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiology, 2009, 150(2): 736-747.
[9]Ikeda‐Kawakatsu K, Maekawa M, Izawa T, Jun‐Ichi I, Nagato Y. ABERRANT PANICLE ORGANIZATION2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant Journal, 2012, 69 (1): 168-180.
[10]Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen R, Yamazaki R, Tokunaga H, Kitaguchi Y, SatoY. Tawawa1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proceedings of the National Academy of Sciences, 2013, 110(2): 767-772.
[11]Komatsu M, Chujio A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003, 130(16): 3841-3850.
[12]Ashikari M, Sakakibara H, Lin S, Yamamoto T, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309 (5737): 741-745.
[13]Li S, Zhao B, Yuan D, Duan M, Li C. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proceedings of the National Academy of Sciences, 2013, 110(8): 3167-3172.
[14]Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007, 445(7128): 652-655.S
[15]Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 2011, 9(9): 1002-1013.
[16]Yang J, Cho L, Yoon J, Yoon H, Wai A H, Hong W, Han M, Sakakibara H, Liang W, Jung K. Chromatin interacting factor OsVIL2 increases biomass and rice grain yield. Plant Biotechnology Journal, 2019, 17(1): 178-187.
[17]Yong H, Bai X, Luo M, Xing Y. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice. Journal of Integrative Plant Biology, 2019, 61(9): 987-999.S
[18]Wu Q, Li D Y, Li D J, Liu X, Zhao X, Li X, Li S, Zhu L. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.). Frontiers Plant Science, 2015, 6: 833-845.S
[19]Guo T, Lu Z Q, Shan J X, Ye W W, Dong N Q, Lin H X.SERECTA1SActs Upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell, 2020, 32(9): 2763-2779.S
[20]Li Y, Li X M, Fu D B, Wu C. Panicle Morphology Mutant 1 (PMM1) determines the inflorescence architecture of rice by controlling brassinosteroid biosynthesis. BMC Plant Biology, 2018, 18(1): 348-360.
[21]Lin Y, Zhao Z G, Zhou S R, Liu L, Kong W, Chen H, Long W, Feng Z, Jiang L, Wan J. Top Bending Panicle1 is involved in brassinosteroid signaling and regulates the plant architecture in rice. Plant Physiology of Biochemistry, 2017, 121: 1-13.S
[22]Yamagishi J, Miyamoto N, Hirotsu S, Laza R C, Nemoto K. QTLs for branching, floret formation, and pre-flowering floret abortion of rice panicle in a temperate japonica x tropical japonica cross. Theoretical and Applied Genetics, 2004, 109(8): 1555-1561.
[23]Li S B, Qian Q, Fu Z M, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zhan J G, Li J. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant Journal, 2009, 58(4): 592-605.S
[24]徐华山, 孙永建, 周红菊, 余四斌. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析. 作物学报, 2007, 33 (6): 979-986.Xu H S, Sun Y J, Zhou H J, Xu S B. Development and characterization of contiguous segment substitution lines with background of an elite restorer line. Acta Agronomica Sinica, 2007, 33(6): 979-986.
[25]Tan C J, Sun Y J, Xu H S, Yu S B. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breeding, 2011, 130(2): 177-184.
[26]王斌,刘贺梅,毛毕刚,高素伟,徐宏斌,葛建贵. 水稻顶部小穗退化性状的QTL分析. 中国水稻科学, 2011, 25(5): 561-564.Wang B, Liu H M, Mao B G, Xu H B, Ge J G. QTL analysis on apical spikelet abortion in rice. Chinese Journal of Rice Science, 2011, 25(5): 561-564.
[27]高素伟,张玲,毛毕刚,程治军,万建民. 水稻穗顶部退化突变体L-05261的遗传分析. 作物学报, 2011, 37(11): 1935-1941.Gao S W, Zhang L, Mao B G, Cheng Z J, Wan J M. Genetic analysis of rice mutant L-05261 with panicle apical abortion trait. Acta Agronomica Sinica, 2011, 37(11): 1935-1941.
[28]Cheng Z J, Mao B G, Gao S W, Zhang L, Wang J L, Lei C L, Zhang X, Wu F Q, Guo X P, Wan J M. Fine mapping of qPAA8, a gene controlling panicle apical development in rice. Journal of Integrative Plant Biology, 2011, 53(9): 710-718.
[29]Bai J T, Zhu X D, Wang Q, Zhang J, Chen H Q, Dong G J, Zhu L, Zheng H K, Xie Q J, Nian J Q, Chen F, Fu Y, Qian Q, Zuo J R. Rice TUTOU1 encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development. Plant Physiology, 2015, 169(2): 1179-1191.
[30]Heng Y, Wu C, Long Y, Luo S, Ma J, Chen J, Liu J, Zhang H, Ren Y, Wang M. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell, 2018, 30(4): 889–906.
[31]彭永彬. 水稻穗顶退化突变体paa1019和paa74的基因克隆与功能分析.四川农业大学, 2018.PENG Y B. Cloning and functional charactization of panicle apical abortion 1019 and panicle apical abortion 74 in rice. Sichuan Agriculture University, 2018.
[32]Murray M G and Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321–4325.
[33]Sanguinetti C J, Dias N E, Simpson A J. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17 (5): 915-919.
[34]Liu Y G, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007, 43(5): 649-656.
[35]Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 1977, 74(12): 5463-5467.
[36]Kwon Y, Yu S I, Park J H, Ying L, Han J H, Alavilli H, Cho J I, Kim T H, Jeon J S, Lee B H. OsREL2, a rice TOPLESS homolog functions in axillary meristem development in rice inflorescence. Plant Biotechnology Reports,S2012,S6(3): 213-224.
[37]Gao X X, Chen Z H, Zhang J, Wu C. OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. Planta, 2011, 235(4): 713-727.
[38]Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano H Y. ABERRANT SPIKELET AND PANICLE 1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant Journal for Cell Molecular Biology, 2012, 70(2): 327-339.
[39]Tankaka W, Pautler M, Jackson D, Hirano H Y. Grass Meristems II: inflorescence architecture, flower development and meristem fate. Plant and Cell Physiology, 2013, 54 (3): 313-324.
[40]Krogan N T and Long J A. Why so repressed? Turning off transcription during plant growth and development. Current Opinion in Plant Biology, 2009, 12(5): 628-636.
[41]Zheng J S, Hong K, Zeng L J, Wang L, Kang S J, Qu M H, Dai J R, Zou L Y, Zhu L X, Tang Z P, Meng X B, Wang B, Hu J, Zeng D L, Zhao Y H, Cui P, Wang Q, Qian Q, Wang Y H, Li J Y, Xiong G S. Karrikin signaling acts parallel to and additively with strigolactone signaling to regulate rice mesocotyl elongation in darkness. Plant Cell, 2020, 32(9): 2780–2805.附表 1 本文使用的引物Table S1. Primers used in this study
PDF(8484 KB)

文章所在专题

水稻

28

Accesses

0

Citation

Detail

段落导航
相关文章

/